The labeled perfect matching in bipartite graphs

نویسنده

  • Jérôme Monnot
چکیده

In this paper, we deal with both the complexity and the approximability of the labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V,E) with |V | = 2n vertices such that E contains a perfect matching (of size n), together with a color (or label) function L : E → {c1, . . . , cq}, the labeled perfect matching problem consists in finding a perfect matching on G that uses a minimum or a maximum number of colors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the hardness results for the labeled perfect matching problems in bipartite graphs

In this note, we strengthen the inapproximation bound of O(log n) for the labeled perfect matching problem established in J. Monnot, The Labeled perfect matching in bipartite graphs, Information Processing Letters 96 (2005) 81-88, using a self improving operation in some hard instances. It is interesting to note that this self improving operation does not work for all instances. Moreover, based...

متن کامل

Unmixed $r$-partite graphs

‎Unmixed bipartite graphs have been characterized by Ravindra and‎ ‎Villarreal independently‎. ‎Our aim in this paper is to‎ ‎characterize unmixed $r$-partite graphs under a certain condition‎, ‎which is a generalization of Villarreal's theorem on bipartite‎ ‎graphs‎. ‎Also, we give some examples and counterexamples in relevance to this subject‎.

متن کامل

On Complexity and Approximability of the Labeled Maximum/Perfect Matching Problems

In this paper, we deal with both the complexity and the approximability of the labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V, E) with n vertices with a color (or label) function L : E → {c1, . . . , cq}, the labeled maximum matching problem consists in finding a maximum matching on G that uses a minimum or a maximum number of colors.

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Some perfect matchings and perfect half-integral matchings in NC

We show that for any class of bipartite graphs which is closed under edge deletion and where the number of perfect matchings can be counted in NC, there is a deterministic NC algorithm for finding a perfect matching. In particular, a perfect matching can be found in NC for planar bipartite graphs and K3,3-free bipartite graphs via this approach. A crucial ingredient is part of an interior-point...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2005